Friday, December 18, 2015

Hello all,

Donovan here. We're wrapping up (no pun intended) for our holiday break and finishing off the fall semester here at Plymouth State University. In the spirit of tidying up loose ends, I'd like to give an update from the LoVoTECS team.

Ashley Inserillo has moved onward and upward to a career with the State of NH where she'll work to keep our drinking water safe. We wish her the best and thank her for the invaluable contributions she made while she was here.

Ashley's responsibilities will fall to myself and our new colleague, Dan Evans. Dan comes to us with a good deal of experience working with large hydrological data sets and with HOBO loggers specifically.

Our road salt sites are all deployed!

We have four sites in the White Mountain National Forest, with one site serving as a control along Bear Notch Road, which is closed, and not deiced, in winter. The other WMNF sites are along the Kancamagus Hwy and on NH 49 in Waterville Valley. Additionally, we have three road salt sites monitoring the Squam Lakes watershed, on NH 113, NH 258, and at the intersection of NH 175 and US 3. Lastly, we will be monitoring NH 25's impact on Clay Brook in Plymouth.

We're excited that we managed to install all sites before any salt was used this season.

Our Road Salt sites can be found in our Google Map. Simply view the Road Salt Locations layer, or take note of the dark blue locations among all active sites.
LoVoTECS Locations

This phase of the LoVoTECS experience will be coming to an end in August. We're excited with the data you've all provided and now must compile it into the many stories it wants to tell. Look for updates as these stories come together.

Thank you, volunteers and partners, for all you do and all you've done. Like our loggers, we hope spring finds you safe, functional, and rich with memories.

Thursday, October 29, 2015

Hey everyone!

I am Donovan King, a biologist, and I joined the LoVoTECS team as a field technician a few months ago after finishing my MS with Plymouth State University.

We have some exciting new work emerging for our LoVoTECS network.

We are currently in the process of moving our research upstream. We will continue to analyze the valuable data we obtained from all of your sites, but we are shifting our focus to the White Mountain tributaries. We will be further exploring the intrusion of road salt into streams at road crossings beginning this 2015/16 winter.

The Cary Institute notes that New Hampshire was the pioneer of using salt to deice our roadways, beginning our first experimental treatments in 1938. The ingenuity has made our highways safer and undoubtedly saved countless lives, but not without environmental consequences. Excess salt poses a risk to our stream ecosystems and contaminates the ground water feeding municipal drinking wells and reservoirs. Today, in the White Mountain region alone, we apply some 25 thousand tons of salt each year to maintain driving conditions on state roads and, likely in response to changing weather patterns, our annual road salt use has been increasing. Local roads and private landholders contribute even more, though the exact amounts are hard to ascertain.

Understanding how the direct input of salt from the road and the legacy salt of previous seasons leeching from soils and ground water interact is crucial to informed policy making. Our new research will attempt to isolate background ions – resulting from natural weathering - from the contribution of ions from deicing salts and pair this information with stream flow rates. To do this, we are installing standardized road salt monitoring sites with paired upstream and downstream sensors placed at prescribed distances from the road (see figure below). We hope to have all sites installed and collecting data prior to the 2015/2016 ice over.



 In the Squam Lakes region, we are pairing our research with that of two new graduate students:

Rebecca Hanson is with the Squam Lakes Association. They have been monitoring water quality in the Squam Lake since 1979. She hopes to expand monitoring to our tributaries and examine modern threats to water quality, such as impacts from road salt application. This will better help the SLA to achieve their mission to protect the Squam Lakes and Watershed. Information gathered from this study will help to inform the updated Squam Watershed Plan, and enable them to not just monitor the lakes, but to take action in restoration and protection.

Anju Shrestha is researching a proof of concept to monitor phosphorous input into the lake. She will attempt to pair specific conductivity to phosphorous loading in the streams. If successful, this could improve the usefulness of our data collection methods.

We will be installing at least two of our standardized road salt monitoring sites on Squam Lake tributaries (see map below). Salt use along the northern watershed of Squam Lake, Rt. 113, has been increasing since 1997. Then, an average of 6.98 tons of salt per lane mile was applied. In 2015, the average salt per lane mile has more than doubled to 15.96 tons.

Map of Squam Lakes Sites

In contrast, the Tenney Mountain Hwy (Rt. 25) has seen a sporadic history of annual salt application from as little as 15 to as much as 30 tons per lane mile, with no noticeable change over the last 18 years. Here, we have installed a standardized monitoring site in Clay Brook.

The west end of the Kancamagus (Rt. 112) will also receive several standardized monitoring sites, though the exact locations are still being explored. We hope in the coming weeks to have chosen some informative locations so we can begin to collect data. The Kancamagus is exciting because road salt use is on the decline for NH’s famous roadway; from >20 tons per lane mile in the late 90s and peaking at 43 in 2003, application rates have been down to the teens for the last three years.

Friday, May 8, 2015

Snapshot Results from 2013 & 2014

Happy Spring Everyone!
Please follow this link to view the LoVoTECS Snapshot results from Summer 2013 and 2014. Feel free to ping us with any questions!